

DATA SHEET Hall Effect Current Sensor

PN: BJHCS-SH

Features

Supply voltage : ±

Current output

IPN = 1000A

High accuracy

Closed loop

- Good linearity
- Fast response time
- Low temperature drift
- High anti-jamming capability
- Strong current overload

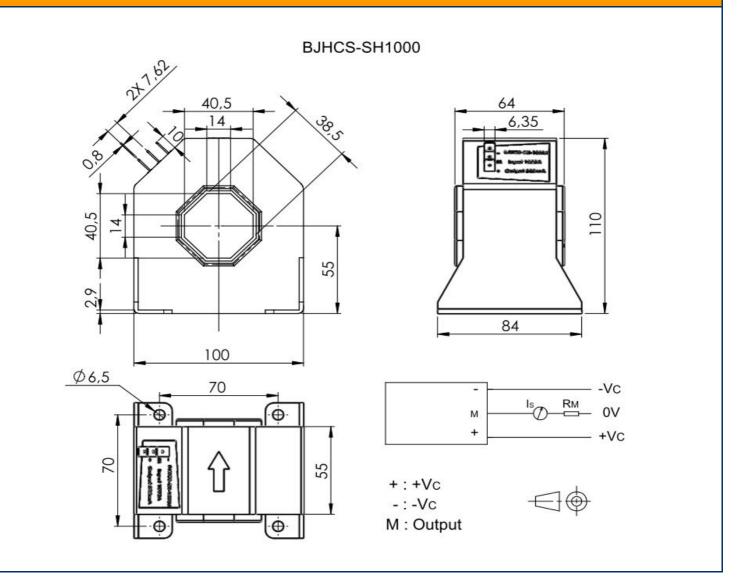
Applications

- AC/DC variable speed motor driver
- **Battery applications**
- Uninterruptible power supplies (UPS)
- Power supplies for welding applications •

±15 to ±24V DC	• Through hole	Through hole primary		
	• Can be custor	nized		
B) Tech Power	Recorded	C C Rohs		
		REACh ✓		

ELECTRICAL DATA						
BJHCS-SH		1000A				
Nominal rms current I _{PN} (A)		1000				
Sensed current range I _{PM} (A)		± 2000				
Measuring Resistance R _M max (Ω)	With V _C = ± 15 Vdc	@ 1000 A	30			
		@ 1500 A max	10			
	With $V_{C} = \pm 24$ Vdc	@ 1000 A	75			
		@ 2000 A max	21			
Coil turns ratio K (P ^{ry} :S ^{ry})		1:5000				
Secondary resistance $R_S(\Omega)$			32			
Rated output current I _{SN} (mA)		200				
Supply voltage V _C (Vdc)		$\pm 15^{\pm 0.5\%}$ to $\pm 24^{\pm 0.5\%}$				
Static current consuption I _{C0} (mA)		≤ 28				
Current consumption I _C (mA)			28+I _S			

ACCURACY DYNAMIC PERFORMANCE		GENERAL & ISOLATION CHARACTERISTICS			
Accuracy X _G @ I _{PN} , T=25℃	± 0,2	%	Operating temperature	-40 to +85	C
Zero offset Current Io @ I _P =0, T=25°C	≤ ± 0,2	mA	Storage temperature	-40 to +125	C
Zero current drift $@$ - 40°C to 85°C	≤ ± 0,5	mA	Weight	620	g
Linearity error ϵ_L	< 0,1	% FS	Insulation voltage (50Hz, 1mn)	6	KV
di/dt accurately followed	> 100	A/µs			
Response time tr	< 1	μs			
Bandwidth (- 3db)	DC to 150	kHz			



Tech Power electronics ZI Les plaines - 39570 Courlaoux - FRANCE - Tél. : +33 (0) 384 252 626 - Fax : +33 (0) 384 252 610 SAS au capital de 160 000 € - SIRET 353 587 645 00055 - Code NAF 2711Z - TVA intracommunautaire FR 47 353 587 645

www.techpowerelectronics.com

DIMENSIONS

MECHANICAL CARACTERISTICS

Octagonal through hole size	min 38,5 mm / max 40,5 mm	
Installation	4 holes Ø 6,5 mm	
General tolerance	± 0,5 mm	
Terminal connection	3 flat blades type "FASTON"	

Cautions :

- I_S is positive when I_P flows in accordance whith the arrow direction (see the top of the sensor);
- Primary conductor temperature should not exceed 100 °C;
- Best dynamic performances (di/dt and response time) are achieved with a single electrical conductor completely filling the through hole;
- To achieve the best magnetic coupling, the primary winding must be wound around the top edge of the sensor;
- For the required connection circuit, see the drawing above.

WARNING : Incorrect wiring may cause damage to the sensor.

 Tech Power electronics

 ZI Les plaines - 39570 Courlaoux - FRANCE - Tél. : +33 (0) 384 252 626 - Fax : +33 (0) 384 252 610

 SAS au capital de 160 000 € - SIRET 353 587 645 00055 - Code NAF 2711Z - TVA intracommunautaire FR 47 353 587 645

