

DATA SHEET Hall Effect Current Sensor

Supply voltage: ±12 to ±18V DC

Current output

PN: BJHCS-LTR

IPN = 50A - 100A - 200A - 300A

Through hole primary

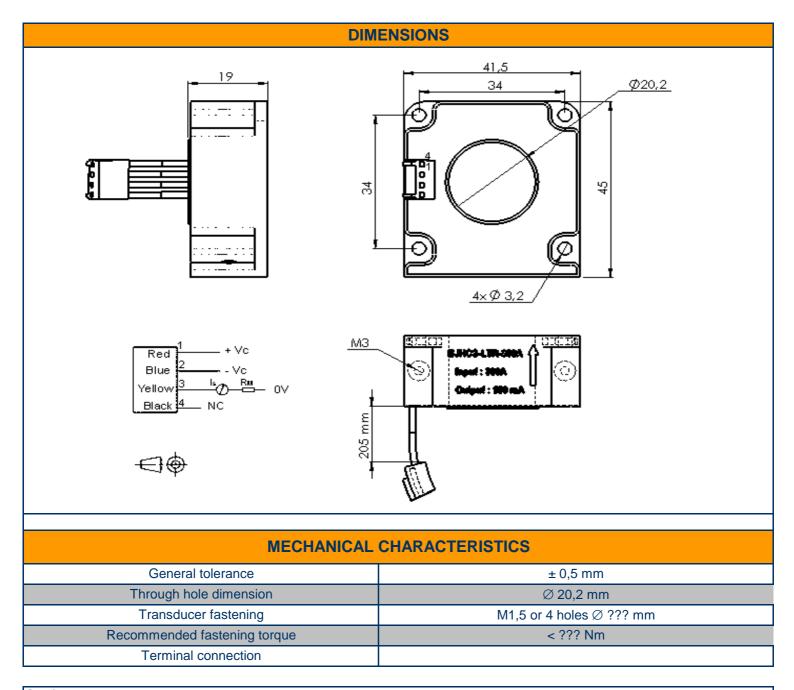
Can be customized

Features

- **Closed loop**
- High accuracy
- Good linearity
- Fast response time Low temperature drift
- High anti-jamming capability
- Strong current overload
- Connection by 4 wire cable

Applications

- AC/DC variable speed motor driver
- **Battery applications**
- Uninterruptible power supplies (UPS)
- Power supplies for welding applications



ELECTRICAL DATA											
BJHCS-LTR			50A	100A	200A	300A1	300A2				
Nominal rms current I _{PN} (A)			50	100	200	300	300				
Sensed current range I _{PM} (A) with V _C =±18V			±150	±300	±600	±600	±900				
and $R_M(\Omega) =$		100	90	35	35	20					
Measuring resistance with V _C =	± 12 V	@ ± I _P (A)	50	100	200	300	300				
		$R_{M} \max(\Omega) =$	200	200	90	53	75				
		@ ± I _P (A)	100	200	500	500	600				
		$R_{M} \max(\Omega) =$	100	90	24	24	20				
	± 15 V	@ ± I _P (A)	50	100	200	300	300				
		$R_{M} \max(\Omega) =$	250	250	120	72	100				
		@ ± I _P (A)	100	200	500	500	600				
		$R_{M} \max(\Omega) =$	130	120	35	36	36				
Coil turns ratio K (P ^{ry} :S ^{ry})			1:1000	1:2000	1:2000	1:2000	1:3000				
Secondary coil resistance Ω			10	20	20	20	34				
Rated output current I _{SN} (mA)			50	50	100	150	100				
Supply voltage V _C (Vdc)			± 12 ^{±5%} to ± 18 ^{±5%}								
Static current consuption I _{C0} (mA)			≤ 20								
Current consuption I _C (mA)			20 + I _S								

ACCURACY DYNAMIC PERFO	ORMANCI	GENERAL CHARACTERISTICS			
Accuracy X _G @ I _{PN} , T=25℃	± 0,5	%	Operating temperature	-40 to +85	${\mathcal C}$
Zero offset Current I _O @ I _P =0, T=25℃	± 0,2	mA	Storage temperature	-40 to +125	C
Current offset drift I _O @ -40℃ to 85℃	≤ ± 0,5	mA	Weight	70	g
Linearity error ϵ_L	≤ 0,1	% FS	Insulation voltage (50Hz, 1mn)	6	KV
di/dt accurately followed	> 200	A/µs	Lead length	205	mm
Response time tr	< 1	μs			
Bandwidth (-3db)	DC to100	kHz			

Cautions:

- I_S is positive when I_P flows in accordance whith the arrow direction (see the top fo the sensor);
- Primary conductor temperature should not exceed 100 °C;
- Best dynamic performances (di/dt and response time) are achieved with a single electrical conductor completely filling the through hole;
- To achieve the best magnetic coupling, the primary winding must be wound around the top edge of the sensor.

WARNING: Incorrect wiring may cause damage to the sensor.

