

DATA SHEET Hall Effect Current Sensor

CE

RoHS

PN: BJHCS-LF1005

IPN = 500A - 1000A

Features

Closed loop Supply voltage : ±15 to ±24V DC

Current output

Through hole primary Can be customized

- **High accuracy**
- Good linearity
- Fast response time
- Low temperature drift
- High anti-jamming capability
- Strong current overload

Applications

- AC/DC variable speed motor driver
- **Battery applications**
- Uninterruptible power supplies (UPS)
- Power supplies for welding applications

ELECTRICAL DATA								
BJHCS-LF1005			500A	1000A				
Nominal rms current I _{PN} (A)			500	1000				
Sensed current range I _{PM} (A)			±1200	±1500				
Measuring resistance with V _C =	± 15 V	$@ \pm I_P (A)$	500	1000				
		R _M max(Ω) =	100	31				
		@ ± 1 _P max (A)	1200	1500				
		R _M max(Ω) =	19	7				
	± 24 V	$@ \pm I_P(A)$	500	1000				
		$R_{M} max(\Omega) =$	180	71				
		@ ± I _P max (A)	1200	1500				
		$R_{M} \max(\Omega) =$	52	34				
Coil turns ratio K (P ^{ry} :S ^{ry})			1:5000					
	Seconda	ry coil resistance $R_{S}(\Omega)$	39					
	Rated of	output current I _{SN} (mA)	100	200				
	Sup	oly voltage V _C (Vdc)	$\pm 12^{\pm 5\%}$ to $\pm 24^{\pm 5\%}$					
	Static cur	rent consuption I _{c0} (mA)	≤ 28					
	Curre	ent consuption I _C (mA)	28	+ I _S				

Powe

Components

Tech Power Electronics ZI Les Plaines - 39570 Courlaoux - France - Tel: +33 (0)3 84 25 26 26 - Fax: +33 (0)3 84 35 26 10

	GENERAL & ISOLATION CHARACTERISTICS				
Accuracy X _G @ I _{PN} , T=25°C	± 0,2	%	Operating temperature	-40 to +85	°C
Zero offset Current I _O @ I _P =0, T=25°C	≤ ±0,2	mA	Storage temperature	-40 to +125	°C
Current offset drift @ -40°C to 85°C	≤ ± 0,5	mA	Weight	510	g
Linearity error ϵ_L	≤ 0,1	% FS	Insulation voltage (50Hz, 1mn)	6	KV
di/dt accurately followed	> 100	A/µs			
Response time tr	< 1	μs			
Bandwidth (-3db)	DC to150	kHz			

Cautions :

• I_S is positive when I_P flows in accordance whith the arrow direction (see the top of the sensor);

Primary conductor temperature should not exceed 100°C

• Best dynamic performances (di/dt and response time) are achieved with a single electrical conductor completely filling the through hole;

• To achieve the best magnetic coupling, the primary winding must be wound around the top edge of the sensor.

WARNING : Incorrect wiring may cause damage to the sensor.

Tech Power Electronics ZI Les Plaines - 39570 Courlaoux - France - Tel: +33 (0)3 84 25 26 26 - Fax: +33 (0)3 84 35 26 10

www.techpowerelectronics.com