

DATA SHEET Hall Effect Current Sensor

PN: BJHCS-AP

IPN = 50A - 100A - 125A - 200A

Features

Closed loop

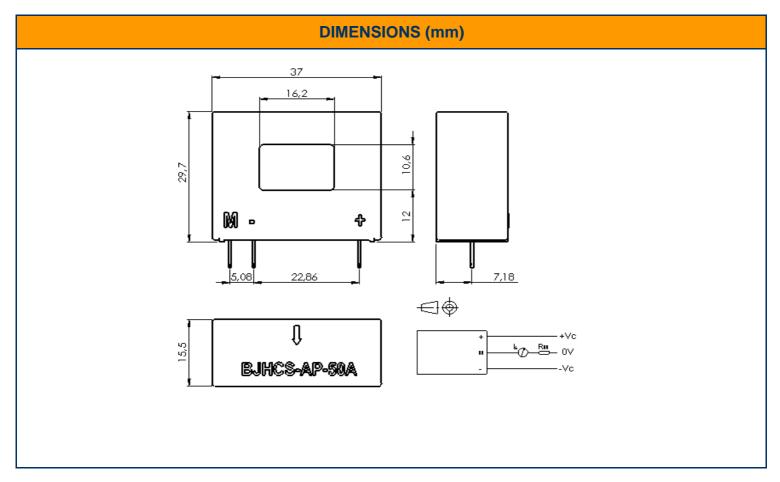
- Supply voltage : ±12 to ±18V DC
- Through hole primary

- High accuracy
- Current output

Can be customized

- Good linearity
- Fast response time
- Low temperature drift
- High anti-jamming capability
- Strong current overload

- AC/DC variable speed motor driver
- Battery applications
- Uninterruptible power supplies (UPS)
- Power supplies for welding applications
- Switching power supplies (SMPS)



ELECTRICAL DATA								
BJHCS-AP		50A	100A	125A	200A			
Nominal rms current I _{PN} (A)		50	100	125	200			
Sensed current range I _{PM} (A)		±150	±300	±375	±600			
Measuring Resistance with $VC = \pm 15V$, @ $T_A = +75$ °C	and @ I _P (A)	± 50	± 100	± 125	± 200			
	$R_{M} \max(\Omega) =$	169	155	58	64			
	and @ I _P max (A)	± 150	± 300	± 375	± 500			
	$R_{M} \max(\Omega) =$	56	42	22	9			
Measuring Resistance with $VC = \pm 18V$, @ $T_A = +75$ °C	and @ I _P (A)	± 50	± 100	± 125	± 200			
	$R_{M} \max(\Omega) =$	219	205	80	91			
	and @ I _P max (A)	± 150	± 300	± 375	± 600			
	$R_M \max(\Omega) =$	75	61	13	10			
Coil turns ratio K (P ^{ry} :S ^{ry})		1:1000	1:2000	1:1000	1:2000			
Secondary resistance $R_S(\Omega)$ @ $T_A = 75$ °C		31	45	31	45			
Rated output current I _{SN} (mA)		50	50	125	100			
Supply voltage V _C (Vdc)		±12 ^{±0,5%} to ±18 ^{±0,5%}						
Current consumption I _C (mA)		10+l _S						

ACCURACY DYNAMIC PER	RFORMANCI	GENERAL & ISOLATION CHARACTERISTICS			
Accuracy X _G @ I _{PN} , T=25℃	± 0,5	%	Operating temperature range	-40 to +85	${\mathbb C}$
Offset current I ₀ @ I _P =0, T=25 ℃	≤ ± 0,2	mA	Storage temperature	-40 to +125	${\mathbb C}$
Drift of I ₀	≤ ± 0,005	mA/℃	Weight	19	g
Linearity error ϵ_{L}	< 0,1	% FS	Insulation voltage (50Hz, 1mn)	2,5	KV
di/dt accurately followed	>100	A/µs	Impulse withstand voltage (1,2/50µs)	4,5	ΚV
Response time tr	≤ 1	μs			
Bandwidth	DC to 200	Khz			

MECHANICAL CHARACTERISTICS				
General tolerance	± 0,2 mm			
Primary square through hole size	12,7 x 7 mm			
Terminal connection	3 pins 0,63 X 0,56 mm			

Cautions:

- I_S is positive when I_P flows in accordance whith the arrow direction (see the top of the sensor);
- Primary conductor temperature should not exceed 100 °C;
- Best dynamic performances (di/dt and response time) are achieved with a single electrical conductor completely filling the through hole;
- To achieve the best magnetic coupling, the primary winding must be wound around the top edge of the sensor.

WARNING: Incorrect wiring may cause damage to the sensor.

